Xgtll Expression Library To Localize a Neutralizing Antibody-Binding Site in Glycoprotein E2 of Sindbis Virus
نویسنده
چکیده
The Sindbis virus envelope contains two species of integral membrane glycoproteins, El and E2. These proteins form heterodimers, and three dimeric units assemble to form spikes incorporated into the viral surface which play an important role in the specific attachment of Sindbis virus to host cells. To map the neutralization epitopes on the surface of the virus, we constructed a Agtll expression library with cDNA inserts 100 to 300 nucleotides long obtained from randomly primed synthesis on Sindbis virus genomic RNA. This library was screened with five different neutralizing monoclonal antibodies (MAbs) specific for E2 (MAbs 50, 51, 49, 18, and 23) and with one neutralizing MAb specific for El (MAb 33). When 106 Agtll plaques were screened with each antibody, four positive clones that reacted with E2-specific MAb 23 were found. These four clones contained overlapping inserts from glycoprotein E2; the domain from residues 173 to 220 of glycoprotein E2 was present in all inserts, and we concluded that this region contains the neutralization epitope recognized by the antibody. No clones that reacted with the other antibodies examined were found, and we concluded that these antibodies probably recognize conformational epitopes not present in the Agtll library. We suggest that the E2 domain from residues 173 to 220 is a major antigenic determinant of Sindbis virus and that this domain is important for virus attachment to cells.
منابع مشابه
Identification of antigenically important domains in the glycoproteins of Sindbis virus by analysis of antibody escape variants.
To study important epitopes on glycoprotein E2 of Sindbis virus, eight variants selected to be singly or multiply resistant to six neutralizing monoclonal antibodies reactive against E2, as well as four revertants which had regained sensitivity to neutralization, were sequenced throughout the E2 region. To study antigenic determinants in glycoprotein E1, four variants selected for resistance to...
متن کاملIdentification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2
Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...
متن کاملFunctional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis.
The glycoprotein envelope of alphaviruses consists of two proteins, E1 and E2. E1 is responsible for fusion and E2 is responsible for receptor binding. An atomic structure is available for E1, but one for E2 has not been reported. In this study, transposon linker-insertion mutagenesis was used to probe the function of different domains of E2. A library of mutants, containing 19 amino acid inser...
متن کاملConformational Flexibility in the Immunoglobulin-Like Domain of the Hepatitis C Virus Glycoprotein E2
The hepatitis C virus (HCV) glycoprotein E2 is the major target of neutralizing antibodies and is therefore highly relevant for vaccine design. Its structure features a central immunoglobulin (Ig)-like β-sandwich that contributes to the binding site for the cellular receptor CD81. We show that a synthetic peptide corresponding to a β-strand of this Ig-like domain forms an α-helix in complex wit...
متن کاملA Sensitive Neutralization Assay for Influenza C Viruses Based on the Acetylesterase Activity HEF Glycoprotein
Influenza C virus possesses specific neuraminate-O-acetylesterase as a receptor-destroying function. This enzymatic activity of the viral glycoprotein HEF (Hemagglutinin, esterase activity and fusion factor) can be visualized in situ by the use of distinct color substrates. Hereby the localization, as well as the quantity of synthesized HEF protein is detectable. We further developed the estera...
متن کامل